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Saturation of a High-Gain Single-Pass FEL 
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_______________________________________________________________________________________ 

Abstract 

We study a perturbation expansion for the solution of the nonlinear one-dimensional FEL equations. 

We show that in the case of a monochromatic wave, the radiated intensity satisfies a scaling relation that 

implies, for large distance z traveled along the undulator, a change in initial value of the radiation field 

corresponds to a translation in z (lethargy).  Analytic continuation using Pade´ approximates yields 

accurate results for the radiation field early in saturation.   
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1. Introduction 
Free-Electron Laser (FEL) amplifiers in the exponential growth regime are accurately described by linear 

equations that are very well understood [1].  On the other hand, although there has been interesting work [2-7] 

on the theory of the saturation of the gain process, the description of the nonlinear phenomena involved is in a 

less advanced state.  At present, most studies of saturation are based upon computer simulation [1].  In this 

paper, we use a perturbation expansion to treat the nonlinearity in the one-dimensional free-electron laser 

equations.   For a monochromatic wave, the resulting Taylor series for the radiation field has a finite radius of 

convergence.  We find that analytic continuation using Pade′ approximates [8] yields results in agreement with 

numerical integration of the 1-D FEL equations, well into saturation.   

     A more detailed exposition of the work reported in this paper as well as discussion of a simplified model 

for SASE statistics in saturation can be found in [9]. 
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2. Perturbation Expansion 
The scaled equations [2] for the evolution of a one-dimensional electron distribution and a monochromatic 

radiation field are:   

                                                         jj pdZd =/θ ,                                                                                        (1) 

                                                          jj ii
j eAAedZdp θθ −−−= */ ,                                                               (2) 

                                                          jiedZdA θ−=/ .                                                                                   (3) 

)()( ztzkk jswsj ωθ −+=  is the phase of the jth electron relative to the radiation and 00 /)( γργγ −=jp  is its 

(scaled) energy deviation.  We define : γ  the relativistic parameter; zkZ wρ2=  the scaled distance along the 

undulator axis; wk/2π  the undulator period; sk/2π  the radiation wavelength; and )(zt j  the arrival time of the 

jth electron at position z.  The radiated electric field has the form )](exp[ ctzikE s −  and the scaled amplitude 

0
2

00 // εγρ mcnEA ≡   (mks units), where ρ is the Pierce parameter and 0n  the electron density. The bracket 

 indicates the average over the initial electron distribution.   

     We develop the solution of Eqs. (1-3) as a perturbation expansion in the small parameter ε , which we 

take to be the initial value of the radiation amplitude, ε=)0(A .  Without loss of generality we consider 1<<ε  

to be real.  Expanding in powers of ε , we write:  

                          L++++= ),,(),,(),,( 002
2

0010000 pZpZZppZ θθεθεθθθθ ,                                             (4) 

                                  L+++= )()()()( 5
5

3
3

1 ZAZAZAZA εεε .                                                                    (5)  

The constraints: 0)0(')0( == nn θθ  ( 1≥n ), and ( ) 101 =A , ( ) 00 =nA   ( 3≥n ) assure that 0)0( θθ = , 

0)0(' p=θ , and ε=)0(A .  For an initially uniform, monoenergetic ( 00 =p ) electron beam, and a 

monochromatic electromagnetic wave, the system is periodic so we can restrict our attention to the interval 

πθ 20 0 ≤≤ .  0,
0

m
ime δθ =− , where 0,mδ  is the Kronecker delta which equals unity for 0=m  and vanishes 

for all 0≠m . 

     Eqs. (1-3) imply:                                                          

                                                          θθθ ii eAAe −−−= *'' ,                                                                            (6) 

                                                   θθ θ ii eeiAiAA −− −=− 22 '*''' .                                                                (7) 
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The prime denotes derivative with respect to Z .  We insert the expansions of Eqs. (4) and (5) into Eqs. (6) 

and (7), and equate terms having equal powers of ε .  The first-order amplitude has the well-known solution [1], 

( ) 3/)( *
1

iZZssZ eeeZA −− ++= where ( ) 2/3 is += .  There are three modes: growing; decaying and oscillating. 

 For 1>>Z , the exponentially growing mode dominates, ( ) ( ) ( )sZZAZA L exp3/)(1 εε ≡≈ , and the perturbation 

coefficients nθ  and nA  have the form: 
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0)(*)()2,(),( θθθε ( 1≥n )                                     (8) 

and 

                                             
m

LLm
m ZAZAmaZA 2

12
12 )()()()( =+
+ε )0( ≥m .                                     (9) 

)2,( knnb −  and )(ma  are complex constants independent of Z , determined recursively from Eqs. (6) and (7).  

We know that 1)0( =a  and find 21,θθ from Eq. (6) and then 3A  from Eq. (7).  Next, 43,θθ  are determined from 

Eq. (6).  Once this is accomplished, 5A  is found from Eq. (7).  In general, suppose we know m221 ,,, θθθ L  and 

1231 ,,, +mAAA L  ,  then 12 +mθ  and 22 +mθ  can be determined from Eq. (6), and then 32 +mA  can be found from 

Eq. (7).   

     It is seen from Eqs. (5) and (9) that the radiation amplitude can be expressed in terms of the linear 

solution, ( ) ( ) ( )sZZAL exp3/ε= , as 

                                                ( ) ( ) )();( 2ZAhZAZA LL≅ε , )1( >>Z                                                           (10) 

with 
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=

=
0
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m

mmah ξξ ,                                                                             (11) 

Using Mathematica we have computed the coefficients a(1),…,a(12) of the power series in Eq. (11).  In 

Table 1, columns 2 and 3, we present the magnitude and argument of the complex ratios, )1(/)( −nana .  We 

see that after the first few values of n, the argument of this ratio remains close to 2.397 rad.  The magnitude of 

the ratio also varies slowly.  The variation is further reduced if we multiply by )2/1/( −nn .  These results 

suggest that there exists an inverse square root branch point at  ( ) 354.0/397.2exp0 i−≅ξ .     This singularity 

limits the radius of convergence of the power series in Eq. (11).  Therefore in order to use it to study saturation, 

we need to carry out an analytic continuation.  A Taylor series can be analytically continued by the use of Pade′ 
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approximates [8].  One constructs a sequence of rational functions to approximate the unknown function such 

that when the rational functions are expanded, the coefficients match the original series expansion as well as 

possible.   

      For 1>>Z , Eq. (10) implies that the radiation intensity has the form: 

                                                 ( )
2

0

2 )(),( ∑
∞

=

≡≅
m

mmaIZA ξξξε ,                                                               (12) 

where the coefficients a(m) are complex and the scaling variable,  

                                                         Ze 32

9
1 εξ ≡ ,                                                                                      (13)  

is real.  Eq. (12) shows that for large Z, the intensity does not depend on ε  and Z independently, but only in the 

combination specified in Eq. (13). Therefore, a change in the initial value of the radiation field, ε , corresponds 

to a translation in Z.  This is a mathematical expression of the intuitive idea that in a process with exponential 

growth the initial conditions are “forgotten.”  In FEL physics this property is sometimes referred to as 

“lethargy.” 

     The singularity limits the radius of convergence of the power series in Eq. (11).  Therefore in order to use 

it to study the saturation of the FEL, we need to carry out an analytic continuation.  One approach to the analytic 

continuation of a Taylor series is the use of Pade′ approximates [8].  In this approach, one constructs a sequence 

of rational functions to approximate the unknown function.  The rational functions are chosen such that when 

they are expanded, the coefficients match the original series expansion as well as possible.  As an example [8], 

let us consider the function 
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Clearly, the Taylor series fails to converge for any value of x>1/2.  The first Pade′ approximate is  

                                           L+−+−+=
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)4/5(1
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x
x                                              (15) 

This simple approximation has the value 1.4 at ∞=x which should be compared to the exact value, 2 .  The 

next approximation is                                                                        

                                                     2

2

)16/29()4/11(1
)16/41()4/13(1
xx
xx

++
++ ,                                                                         (16) 

whose value is 1.4138 at ∞=x .          
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     We expand the right-hand side of Eq. (12) in powers of ξ  and analytically continue using Pade′ 

approximates.  We denote by [M,N],  the Pade′ approximate in which the numerator is a polynomial of degree 

M and the denominator is a polynomial of degree N.  In Fig. 1, we plot the intensity 2)(ZA versus Z for the 

[N,N] approximates, with N=1,…,6.  It is seen that convergence out to about 10=Z  has been achieved for the 

[5,5] and [6,6] approximates. The [6,6] approximate agrees very accurately with the result of direct numerical 

integration of Eqs. (1-3) (dashed curve) out to Z=11.  We have also used Eqs. (10) and (11) to calculate a power 

series expansion for the phase of the radiation field.  We found that the [6,6] Pade´ approximation agrees very 

accurately with the numerical solution for the phase out to Z=10 [9]. 
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Table 1.  Ratios of coefficients in expansion for )(ξh  [Eq. (11)] 

 

 

 

 

 

          n    

)1(/)( −nana  

)]1(/)([ −nanaArg  

2/1
)1(/)(

−
−

n
nnana  

          1 .216951 2.55393 .433903 

          2 .272966 2.43870 .363955 

          3 .298157 2.42034 .357788 

          4 .310309 2.40888 .354639 

          5 .318838 2.40122 .354264 

          6 .325133 2.39864 .354690 

          7 .329361 2.39838 .354696 

          8 .332254 2.39793 .354404 

          9 .334581 2.39709 .354262 

         10 .336581 2.39662 .354296 

         11 .338190 2.39659 .354294 

         12 .339444 2.39654 .354203 
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Fig. 1.  The dimensionless intensity 2)(ZA  as derived from the  [N,N] (N=1,…,6) Pade′ approximates 

(for 003.=ε ) versus dimensionless distance Z  travelled along the undulator.  The dashed curve shows the 

result of a numerical integration of Eqs. (1-3).   
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